

Catalysis Today 57 (2000) 247-254

Strong rhodium–niobia interaction in Rh/Nb₂O₅, Nb₂O₅–Rh/SiO₂ and RhNbO₄/SiO₂ catalysts

Application to selective CO oxidation and CO hydrogenation

Shin-Ichi Ito*, Tatsushi Fujimori, Ken Nagashima, Koichi Yuzaki, Kimio Kunimori Institute of Materials Science, University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan

Abstract

The extent of Rh–niobia interaction in niobia-supported Rh (Rh/Nb₂O₅), niobia-promoted Rh/SiO₂ (Nb₂O₅–Rh/SiO₂) and RhNbO₄/SiO₂ catalyst after H₂ reduction has been investigated by H₂ and CO chemisorption measurements. These catalysts have been applied to selective CO oxidation in H₂ (CO+H₂+O₂) and CO hydrogenation (CO+H₂), and the results are compared with those of unpromoted Rh/SiO₂ catalysts. It has been found that niobia (NbO_x) increases the activity and selectivity for both the reactions. ©2000 Elsevier Science B.V. All rights reserved.

Keywords: Rh-niobia interaction; SMSI; SMOI; CO oxidation; CO hydrogenation

1. Introduction

There has been much interest in strong metal–support interactions (SMSI) not only for metal (Rh, Pt, Pd, etc.) catalysts supported on SMSI oxides (TiO₂, Nb₂O₅, V₂O₃, MnO) but also for metal/non-SMSI oxide (SiO₂) catalysts promoted with SMSI oxides [1–4]. It is now generally accepted that a partially reduced oxide species is formed during high-temperature reduction (HTR; e.g., at 500°C), and then covers the surface of the metal particles (decoration model) [5]. The original definition of SMSI was a severe suppression of the chemisorption ability (H₂, CO) by HTR and the recovery by O₂ treatment at 400–500°C followed by low-temperature reduction (LTR) at 200–300°C. However, the effect of SMSI oxides has been observed for catalytic reac-

ture (HTR, LTR) may not be significant, because the metal surface is already covered with oxide promoters even after LTR (depending on the catalyst preparation method) [8]. So, it seems that the concept of SMSI has been expanded into the area of so called metal-oxide interactions (i.e., the effects of additives on catalysis of supported metal catalysts). Relating to SMSI, we have found calcination-induced metal-oxide interaction: mixed oxides such as RhNbO4, RhVO4 and Rh₂MnO₄ can be formed on an SiO₂ support by mutual interaction between Rh and oxides (vanadia, etc.) during calcination treatment in O₂ or in air of high-temperature (700-900°C) [9-12]. For instance, RhVO₄ is decomposed to highly dispersed Rh metal and reduced vanadium oxide (VO_x) by H_2 reduction above 200°C, and a strong metal-oxide

(Rh-VO_x) interaction (SMOI) is induced on SiO₂

[11,13,14].

tions such as CO hydrogenation even after LTR [6,7], if compared with unpromoted metal/SiO₂ catalysts. In some cases, the effect of the reduction tempera-

fax: +81-298-55-7440.

E-mail address: ito@ims.tsukuba.ac.jp (S.-I. Ito).

^{*} Corresponding author. Tel.: +81-298-53-5479;

Niobia (Nb₂O₅) is one of the typical SMSI oxides, and the beneficial effects of Nb on catalysis have been demonstrated [4,9,15-21]. In this work, Nb₂O₅-supported Rh (Rh/Nb₂O₅), Nb₂O₅-promoted Rh/SiO₂ (Nb₂O₅-Rh/SiO₂) and RhNbO₄/SiO₂ catalysts have been prepared and characterized by H₂ and CO chemisorption and X-ray diffraction (XRD) measurements, and applied to two important catalytic reactions: selective CO oxidation in H_2 (CO+1/2O₂ \rightarrow CO₂) and hydrogenation of CO $(CO+H_2\rightarrow CH_4, C_2H_5OH, etc.)$. The results are compared among the three types of rhodium-niobia catalysts (Rh/Nb₂O₅, Nb₂O₅–Rh/SiO₂, RhNbO₄/SiO₂) and unpromoted Rh/SiO2 catalysts. The selective oxidation of CO in a H₂-rich atmosphere has been of considerable interest for purification of hydrogen feed gas for polymer electrolyte fuel cells (PEFCs) [22,23]. Because the chemisorption ability of H₂ and CO in these Nb catalyst system (SMSI or SMOI) is changed drastically by the calcination and/or reduction treatments, it would be interesting to investigate the $CO+H_2+O_2$ reaction [10,11,24,25]. The CO hydrogenation has also been of interest because the use of appropriate promoters (V, Nb, Mn, etc.) is essential for the improvement of the activity and selectivity. In particular, the SMSI oxides have been reported to be good promoters for the production of C₂ oxygenates such as ethanol and acetic acid [6,8,16,17,24].

2. Experimental

Two SiO₂ supports (denoted as SIO-3 and SIO-7) were provided as Japan reference catalyst (JRC) [26]. To avoid structural change during the following high-temperature calcination, these supports were calcined in air at 900°C for 3 h before impregnation of Rh and promoter (Nb, Mn) [11]. After the precalcination the BET surface area was 40 m²/g for SIO-3 and 81 m²/g for SIO-7, respectively. Nb₂O₅ support (CBMM International LTDA, AD-32) was also calcined in air at 700°C before impregnation of Rh [24]. Rh/Nb₂O₅ catalysts (0.5 wt.% Rh, 4 wt.% Rh) were prepared by impregnation of the precalcined Nb₂O₅ support (BET surface area, $40 \,\mathrm{m}^2/\mathrm{g}$) with an aqueous solution of RhCl₃, then dried at 120°C overnight. After drying the Rh/Nb₂O₅ samples were calcined in air at 500°C for 1 h. Niobia-promoted Rh catalysts

(Nb₂O₅-Rh/SiO₂) were prepared first by impregnation of the precalcined SiO₂ supports (SIO-3, SIO-7) with an aqueous solution of RhCl3, then dried at 120°C overnight, and second by impregnation of the dried sample with (NH₄)₃[NbO(C₂O₄)₃] dissolved in deionized water, and dried at 120°C overnight, then calcined in air at 500°C for 1 h [10,11]. The loading of Rh and the atomic ratio of Nb/Rh were 0.5 wt.% and 9/1 for Nb₂O₅-Rh/SIO-3, and 4 wt.% and 1/1 for Nb₂O₅-Rh/SIO-7, respectively. For a comparison, unpromoted Rh/SiO₂ catalysts (0.5 wt.% Rh/SIO-3, 4 wt.% Rh/SIO-7) were prepared by the same impregnation method using an aqueous solution of RhCl₃. A RhNbO₄/SiO₂ catalyst (4 wt.%, Nb/Rh=1/1) was prepared by the air calcination of the Nb₂O₅-Rh/SIO-7 at 900°C for 3h [11]. A Rh₂MnO₄/SiO₂ catalyst (4 wt.%, SIO-7, Mn/Rh=1/1) was also prepared by the same impregnation method using aqueous solution of RhCl₃ and aqueous solution of Mn(NO₃)₃, then calcined in air at 900°C for 3 h [12].

The CO oxidation (50–150°C) was done in a flow reactor system at atmospheric pressure using 100 mg of the 0.5 wt.% Rh catalysts and total flow rate of 100 cm³/min (STP). The SiO₂ supports were SIO-3 except for the RhNbO₄/SiO₂ and Rh₂MnO₄/SiO₂. Besides, the RhNbO₄/SiO₂ and Rh₂MnO₄/SiO₂ catalysts were diluted by a quartz granule to adjust to the 0.5 wt.% base. The feedstream contained 3 vol.% H₂, 0.2 vol.% CO, and 1 vol.% O₂ (He balance). The CO selectivity (defined as the ratio of O₂ consumption for the CO oxidation over the total O₂ consumption) was expressed by following equation [27]:

$$S = \frac{\Delta O_{2(CO)}}{(\Delta O_{2(CO)} + \Delta O_{2(H_2)})}.$$

Before the CO oxidation measurements, the catalysts were treated in O₂ at 500°C for 1 h followed by H₂ reduction at 200 or 500°C for 1 h. The hydrogenation of CO (140–240°C) was carried out in a flow reactor system at atmospheric pressure using a 1:3 mixture of CO and H₂ (3 cm³/g-cat. min). Before the CO hydrogenation measurements, the 4 wt.% Rh catalysts (the SiO₂ supports were SIO-7) were treated in O₂ at 500°C for 1 h followed by H₂ reduction at 300 or 500°C for 1 h. For both the reactions, the pretreatments were carried out in situ, and analyses of the products were carried out by on-line gas chromatograph system equipped

with TCD detector using a Porapak Q column and He as carrier gas [28].

The H_2 and CO chemisorption measurements were carried out by a conventional volumetric adsorption apparatus, and detailed procedures were described elsewhere [29]. The amounts of the total H_2 chemisorption (H/Rh) and the irreversible CO chemisorption (CO/Rh) were measured at room temperature after O_2 treatment at 500° C followed by H_2 reduction at different temperatures (200, 300, or 500° C). XRD measurements were carried out by an X-ray diffractometer (Rigaku) equipped with a graphite monochromator for Cu K α (40 kV, 30 mA) radiation. The mean Rh particle size was calculated from the XRD line broadening measurement using the Scherrer equation [10,11,30].

3. Results and discussion

3.1. H₂ and CO chemisorption

Table 1 shows the results of the H₂ and CO chemisorption measurements for the 0.5 wt.% Rh catalysts. For the 0.5 wt.% Rh/Nb₂O₅ catalyst, the amounts of both H₂ and CO chemisorption decrease drastically after HTR at 500°C, which shows typical SMSI behavior [24]. For the Nb₂O₅–Rh/SiO₂ (SIO-3), however, the amounts of both H₂ and CO chemisorption are not so largely decreased after HTR as the Rh/Nb₂O₅ catalyst. The H/Rh and CO/Rh values after LTR at 200°C are much lower than those of the unpromoted 0.5 wt.% Rh/SiO₂ (SIO-3) catalyst, which may indicate that the metal surface is already covered with the niobia promoter. This interpretation

Table 1 The changes in the amounts of the H_2 and CO chemisorption by the pretreatment (H_2 reduction) for the 0.5 wt.% Rh catalysts

Catalyst ^a	Reduction temperature (°C)	H/Rh	CO/Rh
0.5 wt.% Rh/Nb ₂ O ₅	200	0.110	0.070
	500	0.000	0.010
Nb ₂ O ₅ -Rh/SiO ₂ ^b	200	0.060	0.047
	500	0.028	0.030
0.5 wt.% Rh/SiO ₂	500	0.340	0.270

^a The SiO₂ support is SIO-3.

may also be supported by the data for the 4 wt.% Rh catalysts. As shown in Table 2, the H/Rh or CO/Rh value of the Nb₂O₅-Rh/SiO₂ (SIO-7, 4 wt.% Rh) after H₂ reduction at 300°C is significantly lower than the metal dispersion (D=0.160) from XRD, which suggests that the Rh surface is covered with the niobia promoter even after LTR. The H/Rh and CO/Rh values of the 4 wt.% Rh/Nb₂O₅ catalyst are decreased drastically after HTR, which indicates the SMSI behavior. However, the chemisorption values of the Nb₂O₅-Rh/SiO₂ (SIO-7) catalyst are not so largely decreased after HTR as the 4 wt.% Rh/Nb₂O₅ catalyst. This trend is similar to that of the 0.5 wt.% Rh catalysts. For the 4 wt.% Rh/SiO₂ (SIO-7), there is no change in both H₂ and CO chemisorption values after HTR and after LTR. For the RhNbO₄/SiO₂, the particle size of the RhNbO₄ compound was 177 Å (not shown) from XRD, and the particle size of Rh metal was 64 Å (see Table 2) after the H₂ reduction at 300°C. The Rh metal is highly dispersed after the decomposition in H₂, which is in good agreement with the previous results using a different SiO₂ support [11,30]. As shown in Table 2, however, both H₂ and CO chemisorption values are severely suppressed after HTR at 500°C, in spite of the Rh particle size is not so changed. It has been already shown that the RhNbO₄ compound is reduced by H₂ treatment at (and above) 300°C [10,11,30], and a strong metal-oxide interaction (SMOI) is induced on SiO₂ support (see Fig. 1). As shown in Table 2, after O2 treatment at 500°C followed by H₂ reduction at 200°C, the H/Rh value is increased from 0.010 to 0.141, but the CO/Rh value is still severely suppressed (0.010). This anomalous suppression of CO chemisorption was also observed in the previous study [25,31]. A strong Rh-niobia interaction (SMOI), including electronic, may result from H₂ reduction of the RhNbO₄ compound [25]. An alternative interpretation may be that CO chemisorption is suppressed by geometric blockage (decoration model) of the Rh surface even after LTR due to more intimate contact between Rh and niobia, while the H₂ uptake might be due to hydrogen spillover from Rh onto niobia and/or SiO2 support.

3.2. CO oxidation in the presence of H_2

Fig. 2 shows the results of oxidation reaction of H_2 (without CO) and CO (without H_2) and CO oxidation

^b 0.5 wt.% Rh, Nb/Rh=9/1.

Particle size (Å)b D^{c} CO/Rh Catalyst^a Reduction temperature (°C) H/Rh Rh/Nb2O5 300 85 0.129 0.119 0.115 500 135 0.004 0.0820.009 Nb2O5-Rh/SiO2d 300 69 0.071 0.160 0.088 500 85 0.129 0.027 0.015 0.010 RhNbO₄/SiO₂ 200^{e} 0.141 300 64 0.172 0.031 0.001 71 0.155 0.010 0.002 500 Rh/SiO₂ 300 88 0.125 0.109 0.066 500 101 0.109 0.113 0.068

Table 2
Comparison of Rh particle size, metal dispersion (D) and the amount of chemisorption after the H₂ treatment of the 4 wt.% Rh catalysts

in the presence of H₂ for the RhNbO₄/SiO₂ catalyst, which was decomposed after H₂ reduction at 500°C. The activity of CO oxidation is increased slightly in the presence of H₂, while the activity of H₂ oxidation is suppressed in the presence of CO because of the saturated CO coverage of lower temperatures. It is also shown that the oxidation activity of H₂ only is lower after the HTR at 500°C than that after the O₂ treatment of the decomposed catalyst at 500°C followed by LTR at 200°C (SMSI effect). It is known that SMSI may be reversed to the normal state in the presence of O₂. In this case, however, the activity of H₂ oxidation was quite different between HTR and LTR (Fig. 2). So, it is suggested that SMSI is not reversed in the presence of O₂ with the low concentration (1 vol.%) at the

RhNbO₄

SiO₂

H₂ reduction at 300-500 °C

Rh

NbO_x

SiO₂

Fig. 1. A model for decomposition of RhNbO4 on SiO2 support.

low-temperatures ($50-150^{\circ}$ C). Fig. 3 compares the CO conversion (based on the same amount of Rh) for the catalysts after H₂ reduction at 500° C. The activity of CO oxidation in the presence of H₂ is as follows:

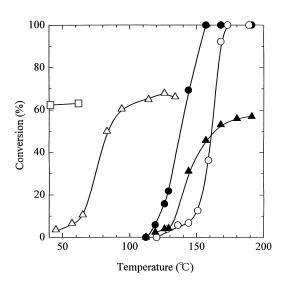


Fig. 2. Oxidation of CO and H_2 on RhNbO₄/SiO₂ after the decomposition by H_2 reduction at 500° C. (\blacksquare) CO conversion, (\blacktriangle) H_2 conversion in the feed gas of 0.2 vol.% CO, 3 vol.% H_2 and 1 vol.% O₂. (\bigcirc) CO conversion in the feed gas of 0.2 vol.% CO and 1 vol.% O₂, (\triangle) H_2 conversion in the feed gas of 3 vol.% H_2 and 1 vol.% O₂. (\square) \square H₂ conversion in the feed gas of 3 vol.% \square H₂ and 1 vol.% O₂ after the O₂ treatment of the decomposed catalyst at \square 500°C followed by LTR at 200°C.

^a The SiO₂ support is SIO-7.

^b From XRD measurement.

^c Calculated from the particle size.

 $^{^{}d}$ Nb/Rh=1/1.

 $[^]e$ The H_2 reduction was performed after O_2 treatment at $500^{\circ}C$ of the RhNbO4/SiO2 catalyst which had been decomposed in H_2 at $500^{\circ}C$.

Fig. 3. Activity of CO oxidation on $0.5 \, \text{wt.}\%$ Rh/Nb₂O₅, Nb₂O₅-0.5 wt.% Rh/SiO₂, RhNbO₄/SiO₂, Rh₂MnO₄/SiO₂ and 0.5 wt.% Rh/SiO₂ in the feedstream of 0.2 vol.% CO, 3 vol.% H₂ and 1 vol.% O₂ after H₂ reduction at 500°C. () Rh/Nb₂O₅, () Nb₂O₅-Rh/SiO₂, () RhNbO₄/SiO₂, () Rh₂MnO₄/SiO₂, () Rh/SiO₂.



Fig. 4 shows the difference in the activity and selectivity of the 0.5 wt.% Rh/Nb₂O₅ after H₂ reduction at 200 and 500°C. The activity after HTR is higher than that after LTR in spite of the lower CO/Rh value (0.010) after HTR than that (0.070) after LTR. The CO selectivity is increased up to 20%, but finally goes down to 10%.

Fig. 5 compares the activity and selectivity between the Nb₂O₅-Rh/SiO₂ and the unpromoted Rh/SiO₂ catalysts after HTR at 500°C. The activity of the Nb₂O₅-Rh/SiO₂ is higher than that of the unpromoted Rh/SiO₂ catalyst, and the activity was also higher than that of after LTR at 200°C (not shown). The CO selectivity of the Nb₂O₅-Rh/SiO₂ is increased to 30%, which is much higher than that of the Rh/SiO₂, but finally decreases to 10%. These results suggest that the niobia in the Nb₂O₅-Rh/SiO₂ and Rh/Nb₂O₅ catalysts promotes both the activity and the selectivity under our experimental condition (CO 0.2%, O₂ 1%, H₂ 3%). The activity of the RhNbO₄/SiO₂ catalyst may be very low because of the severe suppression of CO chemisorption (Table 2). Judging from the data

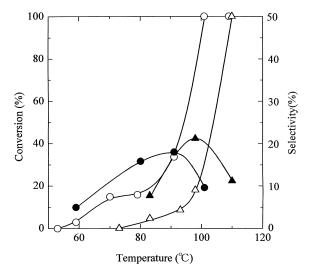


Fig. 4. Dependence of H_2 reduction temperature for the CO conversion and the CO selectivity on 0.5 wt.% Rh/Nb₂O₅ catalyst in the feedstream of 0.2 vol.% CO, 3 vol.% H_2 and 1 vol.% O₂. (\bigcirc) CO conversion after HTR (H_2 500°C), (\blacksquare) CO selectivity after HTR, (\triangle) CO conversion after LTR (H_2 200°C), (\blacksquare) CO selectivity after LTR.

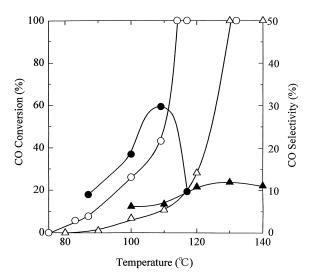


Fig. 5. Comparison of the activity and the CO selectivity for CO oxidation on Nb₂O₅–0.5 wt.% Rh/SiO₂ and 0.5 wt.% Rh/SiO₂ in the feedstream of 0.2 vol.% CO, 3 vol.% H₂ and 1 vol.% O₂ after H₂ reduction at 500°C. (\bigcirc) CO conversion on Nb₂O₅–Rh/SiO₂, (\bigcirc) CO selectivity on Nb₂O₅–Rh/SiO₂, (\triangle) CO conversion on Rh/SiO₂, (\triangle) CO selectivity on Rh/SiO₂.

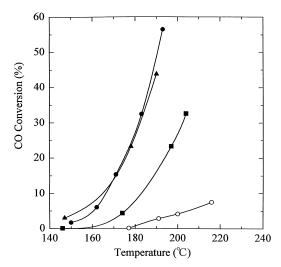


Fig. 6. Activity of CO hydrogenation over the 4 wt.% Rh catalysts (Rh/Nb₂O₅, Nb₂O₅–Rh/SiO₂, RhNbO₄/SiO₂ and Rh/SiO₂) after H₂ reduction at 300°C. (\blacksquare) Rh/Nb₂O₅, (\blacktriangle) Nb₂O₅–Rh/SiO₂, (\blacksquare) RhNbO₄/SiO₂, (\bigcirc) Rh/SiO₂.

in Table 1, however, there is no direct relationship between the chemisorption ability and the activity and selectivity.

3.3. CO hydrogenation

Fig. 6 shows the activity of CO hydrogenation over the 4 wt.% Rh catalysts after H2 reduction at 300°C. The order of the activity is as follows: Rh/ $Nb_2O_5 \cong Nb_2O_5 - Rh/SiO_2 > RhNbO_4/SiO_2 \gg Rh/SiO_2$. For vanadia-promoted catalyst system, we have already reported that a RhVO₄/SiO₂ catalyst after H₂ reduction showed higher activity than V₂O₅-Rh/SiO₂ catalysts [28], and that the main promoter action of VO_x is CO dissociation [28,32]. In the niobia-promoted catalyst system, however, the activity of the RhNbO₄/SiO₂ is much lower than that of Nb₂O₅-Rh/SiO₂, etc. Fig. 7 shows CO conversion using the same catalysts after H₂ reduction at 500°C. The order of the activity is as follows: Rh/ $Nb_2O_5>Nb_2O_5-Rh/SiO_2>RhNbO_4/SiO_2\gg Rh/SiO_2$. Figs. 6 and 7 show that the activities of the three types of Rh-Nb catalysts (Rh/Nb₂O₅, Nb₂O₅-Rh/SiO₂, RhNbO₄/SiO₂) are much higher than that of the unpromoted Rh/SiO₂ catalyst. The NbO_x promoter (reduced niobia), like VO_x , may promote the activity

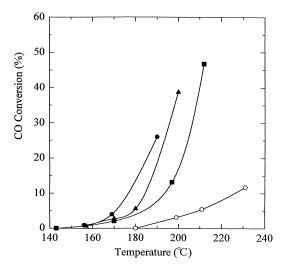


Fig. 7. Activity of CO hydrogenation over the 4 wt.% Rh catalysts (Rh/Nb₂O₅, Nb₂O₅–Rh/SiO₂, RhNbO₄/SiO₂ and Rh/SiO₂) after H₂ reduction at 500°C. (\blacksquare) Rh/Nb₂O₅, (\blacktriangle) Nb₂O₅–Rh/SiO₂, (\blacksquare) RhNbO₄/SiO₂, (\bigcirc) Rh/SiO₂.

of the CO dissociation step. The comparison between Figs. 6 and 7 reveals that the activity of each catalyst (Rh/Nb₂O₅, Nb₂O₅-Rh/SiO₂, RhNbO₄/SiO₂) is lower after H₂ reduction at 500°C than that after H₂ reduction at 300°C. It is recognized that the activity is decreased after the HTR because the H2 and CO chemisorption ability is decreased after the HTR (Table 2). However, the activity of Nb₂O₅-Rh/SiO₂ is decreased more drastically after HTR at 500°C than that of Rh/Nb₂O₅, while the chemisorption ability (H/Rh, CO/Rh) of Rh/Nb2O5 is decreased more drastically after the HTR at 500°C than that of Nb₂O₅-Rh/SiO₂ (Table 2). Therefore, there is no strict relation between the chemisorption ability and the activity. Table 3 summarizes the catalytic results of the 4 wt.% Rh catalysts for CO hydrogenation. Because the Rh dispersion is not so much different, the TOF value based on the Rh particle size is in rough accord with the CO conversion. It should be noted that the reaction temperature for the Rh/SiO₂ is higher by 20°C in Table 3. The TOF value based on the CO chemisorption is significantly higher for the Rh/Nb₂O₅ (H₂ 500°C) and the RhNbO₄/SiO₂ (H₂ 300°C, H₂ 500°C), because the CO/Rh value is severely suppressed on these catalysts. The associative chemisorption ability may not be related directly to the catalytic activity.

Table 3 Catalytic results of the 4 wt.% Rh catalysts for CO hydrogenation at 180° C (at 200° C for Rh/SiO₂) after H₂ reduction at 300° C (at 500° C in parenthesis)

Catalyst ^a	Rh/Nb ₂ O ₅	Nb ₂ O ₅ -Rh/SiO ₂	RhNbO ₄ /SiO ₂	Rh/SiO ₂
CO conversion (%)	27.6 (12.6)	25.5 (5.6)	8.0 (3.8)	4.2 (3.1)
$TOF \ (\times 10^{-4} \text{s}^{-1})$				
(XRD) ^b	30.8 (22.0)	22.7 (6.2)	6.8 (3.7)	4.8 (4.1)
(CO/Rh) ^c	34.6 (452)	51.2 (53.1)	1165 (286)	9.0 (6.5)
Selectivity (%)				
CO_2	3.0 (4.2)	2.7 (8.4)	3.8 (5.8)	0.3 (2.2)
CH ₄	37.7 (18.2)	29.5 (8.0)	3.1 (0.0)	18.1 (46.2)
C_2+^d	23.3 (42.0)	34.0 (30.7)	43.5 (51.7)	41.7 (35.7)
MeOH	6.4 (3.0)	4.0 (7.1)	3.1 (5.5)	12.7 (4.9)
C ₂ oxygenates ^e	29.6 (32.6)	29.8 (45.8)	46.5 (37.0)	27.2 (11.0)
Yield (%)				
C ₂ oxygenates ^e	8.2 (4.1)	7.6 (2.6)	3.7 (1.4)	1.1 (0.3)

^a The SiO₂ support is SIO-7.

In general, the selectivity to CH₄ tends to be higher, as the CO conversion becomes higher. However, it should be noted that for the RhNbO₄/SiO₂ catalyst the selectivity to CH₄ is much lower than that of the Rh/SiO₂ catalyst, in spite of the higher CO conversion of the RhNbO₄/SiO₂. The selectivity to C₂ oxygenates is higher for the Nb₂O₅–Rh/SiO₂ (H₂ 500°C) and the RhNbO₄/SiO₂ (H₂ 300°C) than for the unpromoted Rh/SiO₂ catalyst. However, the order of the yield of C₂ oxygenates coincides with that of the activity (CO conversion), because there is no big change in the selectivity to these catalysts.

4. Conclusions

The activity (per gram Rh) of CO oxidation in the presence of H_2 was as follows: $Rh/Nb_2O_5>Nb_2O_5-Rh/SiO_2>Rh/SiO_2>RhNbO_4/SiO_2$. The niobia promoter affects the activity and selectivity for the CO oxidation in H_2 . However, there was no direct relation between the H_2 and CO chemisorption ability and the activity and selectivity. The activity (per gram cat.; 4 wt.% Rh) of CO hydrogenation was as follows: Rh/Nb_2O_5 (H_2 300° C)> Rh/Nb_2O_5 (H_2 300° C)> Rh/Nb_2O_5 (H_2 500° C)> $Rh/NbO_4/SiO_2$ (H_2

 $300^{\circ}\text{C})\cong \text{Nb}_2\text{O}_5-\text{Rh/SiO}_2$ (H₂ $500^{\circ}\text{C})> \text{Rh/NbO}_4/\text{SiO}_2$ (H₂ $500^{\circ}\text{C})> \text{Rh/SiO}_2$ (H₂ $300^{\circ}\text{C})\cong \text{Rh/SiO}_2$ (H₂ 500°C). There is no big change in the selectivity to C₂ oxygenates, etc., but the CO conversion is increased significantly by the niobia promoter (NbO_x). So, the main promoter action of NbO_x is CO dissociation. The catalytic activity (CO dissociation) may correlate with the chemisorption ability (H/Rh, CO/Rh), although no strict relation appears to exist (e.g., Rh/Nb₂O₅ and Nb₂O₅–Rh/SiO₂ after HTR at 500°C).

References

- [1] S.J. Tauster, S.C. Fung, R.L. Garten, J. Am. Chem. Soc. 100 (1978) 170.
- [2] D.E. Resasco, G.L. Haller, J. Catal. 82 (1983) 279.
- [3] K. Kunimori, Y. Doi, K. Ito, T. Uchijima, J. Chem. Soc., Chem. Commun. (1986) 966.
- [4] E.I. Ko, R. Bafrali, N.T. Nuhfer, N.J. Wagner, J. Catal. 95 (1985) 260.
- [5] G.L. Haller, D.E. Resasco, Adv. Catal. 36 (1989) 173.
- [6] B.J. Kip, P.A.T. Smeets, J. Van Grondelle, R. Prins, Appl. Catal. 33 (1987) 181.
- [7] K. Kunimori, H. Arakawa, T. Uchijima, Studies in Surface Science and Catalysis, Vol. 54, Elsevier, Amsterdam, 1990, p. 144.
- [8] G. van der Lee, A.G.T.M. Bastein, J. van den Boogert, B. Schuller, H.-Y. Luo, V. Ponec, J. Chem. Soc., Faraday Trans. 1 83 (1987) 2103.

^b Turnover frequency based on the Rh particle size from XRD.

^c Turnover frequency based on the CO/Rh value.

^d Hydrocarbons containing two or more C atoms.

^e Amount of ethanol, acetic acid, acetaldehyde and ethylene glycol.

- [9] K. Kunimori, Z. Hu, T. Uchijima, K. Asakura, Y. Iwasawa, M. Soma, Catal. Today 8 (1990) 85.
- [10] Z. Hu, H. Nakamura, K. Kunimori, H. Asano, T. Uchijima, J. Catal. 112 (1988) 478.
- [11] Z. Hu, T. Wakasugi, A. Maeda, K. Kunimori, T. Uchijima, J. Catal. 127 (1991) 276.
- [12] K. Kunimori, T. Wakasugi, Z. Hu, H. Oyanagi, M. Imai, H. Asano, T. Uchijima, Catal. Lett. 7 (1990) 337.
- [13] K. Kunimori, M. Seino, D. Nishio, S. Ito, Stud. Surf. Sci. Catal. 84 (1994) 1625.
- [14] K. Kunimori, K. Yuzaki, M. Seino, S. Ito, Stud. Surf. Sci. Catal. 105 (1997) 2083.
- [15] K. Kunimori, H. Shindo, H. Oyanagi, T. Uchijima, Catal. Today 16 (1993) 387.
- [16] T. Inoue, T. Iizuka, K. Tanabe, Appl. Catal. 46 (1989) 1.
- [17] A. Trovarelli, C. Mustazza, G. Doleetti, Appl. Catal. 65 (1990) 129.
- [18] T. Beutel, V. Siborov, B. Tesche, H. Knözinger, J. Catal. 167 (1997) 379.
- [19] T. Beutel, O.S. Aleksev, Yu.A. Ryndin, V.A. Likholobov, H. Knözinger, J. Catal. 169 (1997) 132.
- [20] A. Maeda, F. Yamakawa, K. Kunimori, T. Uchijima, Catal. Lett. 4 (1990) 107.
- [21] D.A.G. Aranda, A.L.D. Ramos, F.B. Passos, M. Schmal, Catal. Today 28 (1996) 119.

- [22] H. Igarashi, H. Uchida, M. Suzuki, Y. Sasaki, M. Watanabe, Appl. Catal. A159 (1997) 159.
- [23] R.M.T. Sanchez, A. Ueda, K. Tanaka, M. Haruta, J. Catal. 168 (1997) 125.
- [24] K. Kunimori, H. Abe, E. Yamaguchi, S. Matsui, T. Uchijima, Proceedings of the Eighth International Congress on Catalysis, Vol. 5, 1984, p. 251.
- [25] Z. Hu, H. Nakamura, K. Kunimori, T. Uchijima, Catal. Lett. 1 (1988) 271.
- [26] Y. Murakami, in: G. Poncelet, P. Grange, P.A. Jacobs (Eds.), Preparation of Catalysts, Vol. III, Elsevier, Amsterdam, 1983, p. 775.
- [27] M.J. Kahlich, H.A. Gasteiger, R.J. Behm, J. Catal. 171 (1997)
- [28] S. Ito, S. Ishiguro, K. Kunimori, Catal. Today 44 (1998) 145
- [29] K. Kunimori, T. Uchijima, M. Yamada, H. Matsumoto, T. Hattori, Y. Murakami, Appl. Catal. 4 (1982) 67.
- [30] Z. Hu, H. Nakamura, K. Kunimori, Y. Yokoyama, H. Asano, M. Soma, T. Uchijima, J. Catal. 119 (1989) 33.
- [31] K. Kunimori, H. Nakamura, Z. Hu, T. Uchijima, Appl. Catal. 53 (1989) 11.
- [32] S. Ito, S. Ishiguro, K. Nagashima, K. Kunimori, Catal. Lett. 55 (1998) 197.